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A new technique for the determination of atomic valence states and their energies has been de- 
veloped and applied to the water molecule and hydroxyl radical. This method is applicable to valence- 
bond studies involving a large number of resonance structures rather than simply a one structure 
perfect pairing approach. The original basis of resonance structures is transformed into a basis of 
approximate composite functions which are orthogonal and non-interacting for the separated atoms. 
The equilibrium molecular eigenfunction is analyzed in terms of the composite functions by means 
of structure projections. A description of the valence states and the promotional energies of each of 
the component atoms in H/O and OH is obtained. 
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1. Introduction 

In any theory of  molecular  structure it is of  interest to consider the change in 
state of an isolated a tom as it becomes an "a tom"  within a molecular  environment .  
Informat ion  about  such a change in state would be useful in describing the forma- 
t ion of  chemical bonds  between separated atoms. The state of  an a tom as it 
exists within a molecule has been called the "valence state" by Van Vleck 1-11. 
Van Vleck described the valence state as the "chemically active condi t ion" of an 
a tom necessary for molecular  format ion  but  at tained prior  to the onset of  inter- 
a tomic  bonding.  The valence state of  an a tom is, in general, a non-s ta t ionary  
state and therefore it is a hypothet ical  concept. Nevertheless, the idea has proven 
valuable in interpretat ions of  molecular  properties such as bond  energies, bond  
dissociation energies, excitation energies, and electronegativities [1 -4] .  

The impor tan t  valence state discussion by Moffitt [2] employed a single 
non-hybr id ized  perfect pairing valence bond  structure as the molecular  wave- 
function. Later  work  by Opik  [5] and Anno  [6] emphasized the calculation of 
energies of hybridized valence states. Limited configurat ion interaction between 
valence bond  structures has been used in valence state discussions by Hurley  [4] 
and by Craig and T h i r u n a m a c h a n d r a n  [7]. The present paper  outlines a different 
method  of determining the valence state description and promot iona l  energy of  
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atoms in molecules. The method is then applied to the results of a previous 
configuration interaction valence bond study of H20 and OH [8]. 

2. Method 

In the present paper the expression "valence state of an atom" refers to a 
non-stationary state of an isolated atom in which the electronic structure approxi- 
mates, as closely as possible, the electronic structure associated with the atom as 
it exists within the environment of the other atoms of a molecule. Another descrip- 
tion of the valence state would be that state of each component atom of a molecule 
such that if isolated atoms were prepared in these states and then non-adiabatically 
brought to their equilibrium molecular positions, the superposition of the elec- 
tronic structures of the atoms would duplicate the molecular electronic structure. 
These ideas will be made clearer by the descriptions given later in this section of 
the various steps in the determination of the valence states of the oxygen and 
hydrogen atoms in the H20 and OH molecules. 

Valence bond theory is a chemically appealing approach to molecular structure, 
in part because it describes the electronic distribution in a given molecule by the 
interaction of various "structures", each of which is an instantaneous picture of a 
plausible distribution of the electrons in the bond regions and on the various 
nuclear centers. Using the criterion of maximum overlap between bonding 
atoms and electronegativity arguments, various covalent and ionic structures 
may be quickly conceived which should be major contributors in a superposition 
method for developing the molecular electronic structure. A previous paper [8] 
reported the use of forty-nine structures chosen by the above intuitive process in 
describing the H 2 O and OH molecules. The usual secular equations were solved 
for the energies and the accompanying wavefunctions are then linear combi- 
nations of contributions from the forty-nine basis structures. 

One possible approach to a valence state description would be to express the 
contribution of each basis structure to the wavefunction by means of a structure 
projection, v,, with 

v,=a,Y, amS,,,, (1) 
m 

where a~ is the coefficient of structure i in the wavefunction, and where Sij is the 
overlap integral between structures i and j. The wavefunction is normalized such 
that 

Z v, = 1. (2) 
n 

The v, represent the relative weights of each of the basis structures in the molecular 
wavefunction and account in the manner shown by Eq. (1) for the non-ortho- 
gonality of the basis structures at the equilibrium molecular geometry. Next, 
each of the basis structures can be interpreted by means of the procedure of 
Companion and Ellison [-9] as representing, for the infinitely separated atoms, 
each of the component atoms in a particular valence state. This valence state 
description is generally a linear combination of spectroscopic states for which 
energies are available from experiment [10] or from approximate calculations 
(e.g. Table 2). Finally, the valence state of an atom in the molecule could be 
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represented by the sum over all the basis structures of the product of the v, for a 
structure times the spectroscopic state description for that structure. In a similar 
manner the valence state energy of an atom would be obtained by multiplying 
the v, for each structure times the valence state energy of an atom in that structure 
and summing these products over all the structures in the wavefunction. 

The difficulty with the above straightforward determination of the valence 
state and its energy lies in the fact that the basis structures interact and are non- 
orthogonal even at the geometry of infinitely separated atoms. In order to analyze 
the molecular wavefunction by the method of Companion and Ellison [9], a 
non-adiabatic dissociation of the molecule is hypothetically carried out such 
that the coefficients of the wavefunction at the equilibrium geometry are main- 
tained constant at all internuclear distances. The Slater determinants in the 
wavefunction can now be separated into simple products of determinants, where 
each smaller determinant represents an intra-atomic wavefunction. These intra- 
atomic wavefunctions can then be" expressed as a linear combination of spec- 
troscopic states, where each of the spectroscopic states is represented by an 
orbital approximation. The above determination of the valence state carries out 
this procedure for each of the basis structures in the molecular wavefunction and 
then sums the result over each structure. However, since the basis structures 
interact at the geometry at which the spectroscopic state analysis is carried out, 
it is improper to calculate the valence state for the molecular wavefunction by 
simply summing over the individual contributions from each basis structure. 

An alternate procedure has been used in the present paper. When the forty-nine 
original structures are used as a basis at the separated atoms geometry, the resultant 
eigenvectors are orbital approximations to specific spectroscopic states. That is, 
an analysis of each eigenvector indicated that the intra-atomic determinants 
comprising the eigenvector were, in general, characteristic of only one spectro- 
scopic state. This is in contrast to the original structures whose intra-atomic deter- 
minants were in general characteristic of linear combinations of spectroscopic 
states. In Table 1 are listed the forty-nine eigenvectors and in columns 3 and 4 
are listed the appropriate spectroscopic states for oxygen and hydrogen charac- 
terizing each structure. Each eigenvector of this set was orthogonal to all other 
eigenvectors. In particular, functions representing neutral atomic states were 
orthogonal to functions representing ionic states, and functions corresponding 
to the same spectroscopic states were orthogonal to each other. The eigenvalues 
of the secular determinant are thus orbital approximations to the energies of the 
spectroscopic states. These calculated energies are listed for each state in Table 2. 

The set of orthogonal functions was then used as a new basis for a calculation 
of the HzO molecule at its equilibrium geometry. Each basis function may be 
written as 

- - . ~ ' ( f ~ O  f~H l (I~H2' b ~&-v_ , - i  - i  - i  , ,  ( 3 )  

where ~A is an orbital approximation to the i-th spectroscopic state of atom A, 
and d '  is a partial antisymmetrizer operator which performs only the identity 
permutation and those permutations in which electrons are interchanged between 
different state functions ~ ,  ~a i, etc. These Wi would be the "approximate com- 
posite functions" of Moffitt [2]. At the equilibrium geometry the molecular 
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Table 1. Structure projections and promotional energies using 49 orthogonal VB structures for the 
equilibrium geometry of H20  1 

Promotional Energy 
of Each Structure 

2 
Promotional Energy from 

Structure P[ojection O State H State O State H State O State H State 

1 0.19928 O(3p) 2H(2S) 0 0.1600 0.0000 0.0319 

2 0.00000 O(ID) 2H(2S) 0.0805 0.1600 0.0000 0.0000 

3 0.03530 O(ID) 2H(2S) 0.0805 0.1600 0.0028 0.0056 

4 0.03009 O(ID) 2H(2S) 0.0805 0.1600 0.0024 0.0048 

a O(Is) 
5 0.00800 + 2H(2S) 0.2544 0.1600 0.0020 0.0013 

b O(Is *) 

6 0.01700 O(3p *) 2H(2S) 0.6282 0.1600 0.0107 0.0027 

7 0.08044 O(3p *) 2H(2S) 0.6282 0.1600 0.0505 0.0129 

8 0.00674 O-(2P) H(2S)+H + 0.1594 0.5798 0.0010 0.0039 

9 0.19950 O-(2P) H(2S)+H + 0,1594 0.5798 0.0318 0.1157 

i0 0.14212 O-(2P) H(2S)+H + 0.1594 0.5798 0.0227 0.0824 

ii 0.06412 O- (2P) H(2S)+H + 0.1594 0.5798 0.0102 0.0372 

12 0.00877 O(ID) H-(Is)+H + 0.0805 1.0350 0.0007 0.0091 

13 0.00877 O(ID) H-(Is)+H + 0.0805 1.0350 0.0007 0.0091 

14 0.00073 O(ID) H-(Is)+H + 0.0805 1.0350 0.0001 0.0008 

15 0.00073 O(ID) H-(Is)+H + 0.0805 1.0350 0.0001 0.0008 

16 0.00429 O(ID) H-(Is)+H + 0.0805 1.0350 0.0003 0.0044 

17 0.00429 O(ID) H-(Is)+H + 0.0805 1.0350 0.0003 0.0044 

a O(Is) 
18 0.00326 + H-(Is)+H + 0.2544 1.350 0.0008 0.0034 

b O(Is *) 

a O(Is) 
19 0.00326 + H-(Is)+H + 0.2544 1.0350 0.0008 0.0034 

b O(Is *) 

20 0.00105 O+(2P) H-(Is)+H(28) 0.6501 0.6152 0.0007 0.0006 

21 0.00085 O+(2P) H-(Is)+H(2S) 0.6501 0.6152 0.0005 0.0005 

22 0.00105 O+(2P) H-(Is)+H(2S) 0.6501 0.6152 0.0007 0.0006 

23 0.00084 O+(2P) H-(1S)+H(2S) 0.6501 0.6152 0.0005 0.0005 

24 -0. 00005 O+ (2D) H- (Is)+H(2S) O. 7306 0. 6152 -0. 0000 -0. 0000 

25 -0.00150 O+(2D) H-(Is)+H(2S) 0.7306 0.6152 -0.0010 -0.0009 

26 -0.00005 O+(2D) H-(Is)+H(2S) 0.7306 0.6152 -0.0000 -0.0000 
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Promotional Energy 
of Each Structure 

Promotional Energy from 
Structure Pro~ection O State H State O State H State O State H State 

27 -0.00150 O+(2D) H-(1S)+H(2S) 0.7306 0.6152 -0.0010 -0.0009 

28 0.00454 O(1p) 2H(2S) 0.9441 0.1600 0.0043 0.0007 

29 0.00033 O(1p) 2H(28) 0.9441 0.1600 0.0003 0.0000 

30 0.04109 O-(2S) H(2S)+H + 0.8596 0.5798 0.0353 0.0238 

31 0,04107 O-(2S) H(2S)+H + 0,8596 0.5798 0.0353 0.0238 

32 0.00066 O+(2D *) H-(1S)+H(2S) 1.3240 0.6152 0.0009 0.0004 

33 -0.00041 O+(2D *) H-(1S)+H(2S) 1.3240 0.6152 -0.0005 -0.0002 

34 0.00071 O+(2D *) H-(Is)+H(2S) 1.3240 0.6152 0.0009 0.0004 

35 -0.00046 O+(2D *) H-(1S)+H(2S) 1.3240 0.6152 -0.0006 -0.0003 

36 0.00270 O+(2D *) H-(ls)+H(2S) 1.3240 0.6152 0.0036 0.0017 

37 0.00213 O+(2D*) H-(lS)+H(2S) 1.3240 0.6152 0.0028 0.0013 

a o( l s )  
38 0.00029 + 2H(2S) 1.4992 0.1600 0.0004 0,0000 

b o(ls *) 

39 0.00564 O(Ip) H-(Is)+H + 0.9441 1.0350 0.0053 0.0088 

40 0.00749 O(ip) H-(Is)+H + 0.9441 1.0350 0.0071 0,0077 

41 -0.00128 O(Ip) H-(Is)+H + 0.9441 1.0350 -O.O012 -0.0013 

42. -0.00128 O(Ip) H-(Is)+H + 0.9441 1.0350 -0.0012 -0.0013 

43 -0.00087 0+(28) H-(Is)+H(2S) 1.4447 0.6152 -0.0012 -0.0005 

44 -0.00087 O+(2S) H-(Is)+H(2S) 1.4447 0.6152 -0.0012 -0.0005 

45 -0.00217 O+(2P *) H-(Is)+H(2S) 1.5591 0.6152 -0.0034 -0.0013 

46 -0.00217 O+(2p *) H-(Is)+H(2S) 1.5591 0.6152 -0.0034 -0,0013 

47 0.09074 O=(Is) 2H + 1.0072 0.9996 0.0914 0.0907 

b O(Is) 
48 -0.00263 + H-(Is)+H + 1.4992 1.0350 ~0.0039 -0.0027 

a O(Is *) 

b O(Is) 
49 -0.00263 + H-(Is)+H + 1.4992 1.0350 -0,0039 -0.0027 

a O(Is *) 

(including (-) terms) -* 0.3055 0.4784 

0.7839 

Each Hydrogen atom is scaled by (1.4)2; a = 0.9612453; b = 0.03875480. 
2 Relative to the calculated O(3P) energy and relative to the calculated H(2S) unscaled energy. 
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Table 2. Atomic energies (Hartrees) 

l s 2 2 s 2 2 p  4 

O(3p) = - 7 4 . 7 9 1 9  
O(1D) = - 7 4 , 7 1 1 4  
O(1S) = - 7 4 . 5 8 8 1  

l s 2 2 s 2 p  5 

O(3p) = - 7 4 . 1 6 3 7  
O(I~ = - 7 3 . 8 4 7 8  

l s 2 2 p  6 

O(1S) = - 7 3 . 2 8 2 4  

l s 2 2 s 2 2 p  5 

O- (2 p) = - 7 4 . 6 3 2 5  a 

l s 2 2 s 2 p  6 

O- (2S)  = - 7 3 . 9 3 2 3  

l s 2 2 s 2 p  6 

O=(1S) = - 7 3 . 7 8 4 7  

l s 2 2 s 2 p  3 

O+(2P) = - 7 4 , 1 4 1 8  
O+(2D) = - 7 4 . 0 6 t 3  J 

b 

l s 2 2 s 2 2 p  4 

0 + (2 S) 
O + (2 D) 
O + (2 p) 

l s 2 2 p  5 

O + (2 p) 

is 

H(ZS) 

l s  2 

H-(IS) 

= - 7 3 . 3 4 7 2  
= - 7 3 . 4 6 7 9  
= - 7 3 . 2 3 2 8  

= - 7 2 . 7 3 9 7  

= 0.4998 c 

= -0.4198 d 

= - 0 . 3 7 4 6  c 
= 0 . 0 3 5 4  d 

" Note that the electron affinity is quite wrong. 
b Note wrong order (Hund's rule). 
c Hydrogen atom unscaled. 
d Hydrogen atom scaled by (1.4) 2. 

wavefunct ion  is 

and  the energy is given by  

E =  

t I l ~ 2 a i ~ i ,  
i 

~,, ~,aial,.f lj)i~IPi' dr 
i i" 

• 2 aiai' Sii, 
i i" 

(4) 

(5) 
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where 7 j is normalized such that 

Z Z ai a,, Sii, = 1. (6) 
i i' 

In Eqs. (5) and (6) the S,, are overlap integrals between basis functions lp~ and lp r. 
If the molecule is now hypothetically dissociated in a nonadiabatic manner, 
the expansion coefficients, a~, of each of the basis functions remain unchanged 
and Eq. (5) becomes 

E o~ = i i, , (7) 
Z Z a, ai'Sw 

i i '  

where ~ A  is the atomic Hamiltonian operator for atom A, and the wavefunctions 
tp~ and lpv become simple products of atomic state functions. Since the basis is 
orthonormal and non-interacting for the infinitely separated atoms, Eq. (7) 
becomes 

E 2 O H1 ai (Ei +El + EP ~) 
E . =  ' Z a  2 (8) 

i 

The E) in Eq. (8) are the calculated energies for state i of atom A. The valence 
state of atom A may now be defined as 

E a/z EA 

EA - i (9) 
E 
i 

However, the ~i are non-orthogonal at the molecular equilibrium geometry 
and the weighting factor a~/~  a~ doesn't properly take into account this non- 

i 
orthogonality. Instead, following Hurley [4], the weight of each basis function 
at the equilibrium position which should appear in Eq. (9) is taken to be the 
structure projection, v~, defined in Eq. (2). The valence state energy of atom 
A then becomes 

G = Z v,e . (lO) 
i 

The v~ calculated for each ~p~ at the molecular equilibrium geometry of H 2 0  are 
given in column 2 of Table 1. The energy of each spectroscopic state is usually 
taken to be the promotional energy which is the difference between the calculated 
energy values for the given spectroscopic state and the ground 3p state for oxygen 
or the ground 2S state for hydrogen. These values are given in columns 5 and 6 
of Table 1. 

The last step in the method is simply to sum the product of vi times the promo- 
tional energy of ~p~ for each of the basis functions to give the total promotional 
energies for each of the component atoms. These products for each structure are 
given in the final two columns of Table 1. Since these basis functions are orthogonal 
and non-interacting for the infinitely separated atoms, it is now correct to obtain 
the overall promotional energy by summing over the individual contributions 
from each structure. 
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3. Results and Discussion 

The total promotional energies for the oxygen and two hydrogen atoms in 
the ground state wavefunction for H20 are given in Table 1 as 0.3055 Hartrees 
and 0.4784 Hartrees respectively. An entirely similar analysis employing the 
same orthogonal basis set was used for the OH radical (the second hydrogen was 
infinitely separated from the radical) and the results are given in Table 3. The 
promotional energies for the oxygen atom and hydrogen atom are 0.1321 Hartrees 
and 0.2392 Hartrees respectively. The minus signs of some of the structure projec- 
tions are apparently artifacts of the calculations, but they have been included in 
the Tables and in the summation processes in order to present the complete 
results. In the following the oxygen atom as it appears in HzO will be represented 
by O** and the oxygen atom as it appears in OH will be represented by O*. 

From the structure projections it is apparent that the higher promotional 
energy associated with O** compared to O* is due to the decrease in the contribu- 
tion of the V1 function ia going from OH to H20.  The V1 function represents 
the oxygen atom in the 3p state. Concurrent with the decrease in 3p character, 
there is an increase in the ionic contributions such as O -  (2P), O-(2S), and O = (1S) 
in the H 2 0  wavefunction. This is somewhat unfortunate since the O-  states are 
poorly represented by the minimal orbital basis used in these calculations. 
Because of the unrealistically high energies for these species reported in Table~, 
the promotional energy calculated for O** and O* are undoubtedly too high. 
Additional calculations using an extended basis orbital set are being planned to 
correct for the intra-atomic correlation deficiencies of the present orbital set. 

Table 3. Structure projections and promotional energies using 49 orthogonal VB structures" 

Structure 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Promotional Energy 
of Each Structure 

Promotional Energy b from 
Projection O State H State O State H State O State H State 

0.42966 O(3p) H(2S) 0 0.0800 0.0 0.03437 

0.00942 O(ID) H(2S) 0.0805 0.0800 0.00076 0.00075 

0.07397 O(ID) H(2S) 0.0805 0.0800 0.00595 0.00592 

0.03184 O(ID) H(2S) 0.0805 0.0800 0.00256 0.00255 

a O(Is) 
-0.00003 + H(2S) 0.2544 0.0800 0.0 0,0 

b O(Is *) 

0.01539 O(3p *) H(2S) 0.6282 0.0800 0.00967 0.00123 

0.05192 O(3p *) H(2S) 0.6282 0.0800 0.03262 0,00415 

0.00000 O- (2P) H + 0,1594 0.4998 0.0 0.0 

0.00000 O-(2P) H + 0,1594 0.4998 0.0 0.0 

0.12941 O-(2P) H + 0. 1594 0.4998 0,02063 0.06468 
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Structure  Projec t ion  

11 0 .23261  

20 0 .0  

21 0 ,0  

22 0 .00647  

23 0 ,00374  

24 0 .0  

25 0.0 

26 0.00114 

27 0.00054 

28 0.00379 

29 0.00602 

30 0 .0  

31 0 . 0  

32 0 .0  

33 0 .0  

34 0 .00268  

35 0 .00019  

36 0 .0  

37 0 .0  

O State 

o -  (2 p) 

O+(2P) 

O + (2 p) 

O + (2 p) 

O + (2 p) 

o+ (2 D) 

O + (2 D) 

O+(2D) 

0 + (2 D) 

O(Ip) 

O (1 p) 

o -  (2 s) 

O- (2 S) 

O + 2D*) 

O + 2D*) 

O+2D *) 

O + 2 D*) 

O + 2D*) 

O + 2D*) 

b O(Is) 

Promotional Energy 
of Each Structure 

Promotional Energy from 
H State O State H State O State H State 

H + 0.1594 0.4998 0.03708 0.11626 

H- (Is) 0.6501 0,5352 0.0 0.0 

H~(Is) 0.6501 0.5352 0.0 0.0 

H-(Is) 0.6501 0.5352 0.00421 0.00346 

H-(Is) 0.6501 0,5352 0.00243 0.00200 

H-(Is) 0.7306 0.5352 0.0 0.0 

H-(Is) 0.7306 0.5352 0.0 0.0 

H-(Is) 0.7306 0.5352 0.00083 0.00061 

H-(IS) 0.7306 0.5352 0.00039 0.00029 

H(2S) 0.9441 0.0800 0.00358 0.00030 

H(2S) 0.9441 0.0800 0.00568 0.00048 

H+(Is) 0.8596 0.4998 0.0 0.0 

H+ (Is) 0.8596 0.4998 0.0 0.0 

H - ( I s )  1 .3240  0 .5352  0 .0  0 .0  

H-(1S) 1 .3240  0 .5352  0 .0  0 . 0  

H-(1S) 1 .3240  0 .5352  0 .00355  0 .00143  

H-(1S) 1 .3240  0 .5352  0 .00025  0 .00010  

H-(1S) 1 .3240  0 .5352  0 . 0  0 . 0  

H-(1S) 1 .3240  0 .5352  0 . 0  0 .0  

38 0 .0  + H(2S) 1 .4992 0 .0800  0 .0  0 .0  
a O(1S *) 

43 0 .0  O+(2S) H - ( l s )  1 .4447  0 .5352  0 .0  0 .0  

44 0 .00025  O+(2S) H-(1S) 1 .4447  0 ,5352  0 ,00036  0 .00013  

45 0 .0  O+(2P *) H-(1S) 1 .5591  0 .5352  0 .0  0 .0  

46 0 .00097  O+(2P *) H-(1S) 1 ,5591 0 .5352  0 ,00151  0 .00052  

0 .13206  0 .23923  

0 .37129  

a The H a tom in OH  has  been scaled by (1.4) 2 while the free H is unscaled. 
b Relative to the calculated O (3 p) energy and relative to the calculated H (2S) unscaled energy. 
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Moffitt [-2] estimated the valence state energies of oxygen to be the same in 
both H20 and OH. This analysis was based on a perfect pairing model. From 
the results presented here it is apparent that Moffitt's analysis must be modified 
when a large amount of configuration interaction is permitted. This modification 
will disturb Moffitt's interpretation of the difference in the bond dissociation 
energies of H20 as being due simply to a relaxation of the O atom, following 
complete dissociation, from its valence state energy to the energy of the ground 
state 3p term. The present paper indicates that there must be another relaxation 
process at work. The OH radical originally produced (via a non-adiabatic dissocia- 
tion) with the oxygen atom in the valence state O** must relax to an OH radical 
with an oxygen atom in the valence state O*. 

Van Vleck [1] defined gross bonding energy as the sum of the experimental 
bond dissociation energy and the promotional energy prorated per bond of the 
"atoms" within the molecule. From the previous H20 results ['8] the difference 
in energy of H20 and the free ground state atoms was 0.2289 Hartrees. Adding 
to this the promotional energy of the oxygen and hydrogen atoms in H20 of 
0.7839 Hartrees and dividing by two yields the gross bond energy in H20 as 
0.5065 Hartrees. The same type of analysis for the OH radical gives 0.0957 Hartrees 
plus 0.3713 Hartrees promotional energy or a gross bond energy of 0.4670 Hartrees. 
The difference in these gross bond energies would reflect the difference in the 
experimentally observed bond dissociation energies if the two relaxation processes 
mentioned earlier were similar in energy. The relaxation of the products from the 
OH dissociation is, of course, 0.3713 Hartrees. The energy of the relaxation of 
the products (H + OH) of the first dissociation of HzO must be similar. Since 
the relaxation of the H atom from its valence state to the aS ground state is 0.2392 
Hartrees, the remaining relaxation must amount to about 0.13 Hartrees. This 
would be the change in energy accompanying the change in the OH radical as the 
O atom changes from O** to O*. (It is interesting that the valence state of the H 
atom remains unchanged during this relaxation.) The only other indication of 
the magnitude of the relaxation in OH is the difference in the promotional energies 
of O** and O*, which is 0.1734 Hartrees. 

Acknowledgement. We are indebted to the Ohio University Academic Computing Center for 
making available the considerable amount of computation time involved in these calculations. 
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